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Abstract

An analytical approach is developed to investigate the vibration characteristics of the sloshing and
bulging modes for a liquid-filled rigid circular cylindrical storage tank with an elastic annular plate in
contact with sloshing surface of liquid. The cylindrical tank is filled with a non-viscous and incompressible
liquid having a free surface. The free surface of liquid is partially covered by an annular plate with outer
clamped edge and inner free edge. The liquid domain is limited by a rigid cylindrical wall and a rigid flat
bottom. As the effect of free surface waves is taken into account in the analysis, the bulging and sloshing
modes are studied. The solution for the velocity potential of liquid movement is assumed as a suitable
harmonic function that satisfies the Laplace equation and the relevant boundary conditions. The Rayleigh–
Ritz method is used to derive the frequency equation of the liquid-filled rigid cylindrical tank with an
annular plate on the sloshing surface. The effects of inner-to-outer radius ratio, thickness of annular plate
and liquid volume on vibration characteristics of the storage tank are studied. To demonstrate the validity
of the present analytical approach, the published results are compared for the rigid cylindrical tank without
a plate and the finite element analysis is performed for the tank with a plate.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The motion of liquid with a free surface is of great concern in many engineering disciplines such
as storage tanks or containers in airplanes, missiles, space vehicles, satellites and several others.
The sloshing effect of free surface on the performance and stability of such structures is very great
in the case of large scaled structures. The liquid forces and movements generated by sloshing in
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case that the external excited frequency is close to the fundamental sloshing frequency may lead to
non-controllability and destruction of the structures. The usual way to treat the troublesome
problem is to alter this instability frequency. This may be achieved by covering the free surface
with a flexible structure member, such as a membrane or a thin elastic plate. Immerging the
annular plate (or disk)-type baffle in the liquid also is being widely used for general engineering
liquid-storage tanks because it is more practical and easy to install. These make the natural
sloshing frequencies deviate from the excited frequency and reduces the sloshing masses. The
knowledge of the natural frequencies of the liquid or the elastic structure alone is not adequate to
understand the complex liquid–structures interaction problems. The study of coupled frequencies
resulting from liquid–structure interaction is very important.

There are many reports to solve the liquid–structure interaction problems of the structural
elements on liquid free surface and in liquid domain. Kwak [1] and Amabili et al. [2] investigated
the effect of fluid on the natural frequencies of circular plates vibrating in contact with an infinite
liquid surface. Amabili and Kwak [3] investigated the effect of free-surface waves on free
vibrations of circular plates resting on a free surface of infinite liquid domain. Amabili et al. [4]
and Liang et al. [5] gave the natural frequencies of annular plates on an aperture of an infinite
rigid wall and in contact with a fluid on one side. Bauer [6] presented the coupled hydroelastic
frequencies of a liquid in a circular cylindrical rigid container, of which the free liquid surface was
fully covered by a flexible membrane or an elastic circular plate. Bauer and Chiba [7] extended the
study in Ref. [6] to the structure filled with incompressible viscous liquid. Amabili [8] studied the
free vibrations of circular plates resting on a sloshing liquid free surface; the liquid domain was
limited by a rigid cylindrical surface and a rigid flat bottom. The various kinds of devices for
suppressing the dynamic motion of liquid were introduced and classified by Welt and Modi [9].
Welt and Modi [10] and Hung and Pan [11] gave the experimental results for the free vibration
and dynamic response analysis of the baffled tanks. Sharma et al. [12] used a freely floating plate
on the surface of fluid in order to passively control sloshing in a cylindrical container at the
fundamental mode. Bauer and Komatsu [13,14] studied the coupled hydroelastic frequencies of a
frictionless liquid in a circular cylindrical container, of which the free liquid surface was partially
covered by an elastic annular plate. Gedikli and Erguven [15] studied the effect of an annular
type baffle on the natural frequencies of liquid in a cylindrical tank using BEM, where the
baffle was assumed to be rigid and immersed in liquid. Gou et al. [16] presented the non-linear
dynamics of a rigid cylindrical tank with an annular baffle, where the structure was modelled
on a spring–damper–mass system. Cho et al. [17] investigated vibration characteristics of an
annular plate type baffled cylindrical liquid-storage tank by the coupled structural-acoustic
finite element method, where the baffles were immersed in liquid. Biswal et al. [18] examined
the natural frequencies of a baffled cylindrical rigid tank with an immersed annular plate using
FEM.

In this paper, attention is mainly focused on the sloshing and bulging mode for a rigid circular
cylindrical storage tank with an elastic annular plate on the sloshing surface. The cylindrical tank
is filled with a non-viscous and incompressible liquid having a free surface. The free surface of
liquid is partially covered by an elastic annular plate. The liquid domain is limited by a rigid
cylindrical surface and a rigid flat bottom. Using the Rayleigh–Ritz method, the fully coupled
problem between sloshing modes of the free surface and bulging modes of the annular plate is
solved. To demonstrate the validity of the present analytical approach, the published results are
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compared for the rigid cylindrical tank without a plate and the finite element analysis is performed
for the tank with a plate.

2. Energy of the annular plate

A circular cylindrical tank of radius R (Fig. 1) is filled to a height H with an incompressible and
non-viscous liquid of density rL: The cylindrical wall at r ¼ R and the tank bottom at x ¼ 0 are
considered as rigid walls, while the free surface at x ¼ H is partially covered with an elastic
annular plate of uniform thickness hp; density rp and inner radius a: The polar co-ordinate system
(r; y) for the plate is introduced at the center of the annular plate. The considered annular plate,
which is vibrating in vacuum, is assumed to be made of linearly elastic, homogeneous and
isotropic material. Moreover, the effect of shear deformation and rotary inertia is neglected. The
equation of motion for transverse displacement, w; of annular plate is

D
@2

@r2
þ

1

r

@

@r
þ

1

r2

@2

@y2

� �2

w þ rPhP
@2w

@t2
¼ 0; ð1Þ

where D ¼ Eh3
p=12ð1 � n2Þ is the flexible rigidity of the plate; n and E are the Poisson ratio and

elastic modulus.
The classical methods of finding the solutions of this equation are based on the separation

of variables. In the case of axisymmetric boundary conditions the solution in vacuum takes the
form [4,5]

wðr; y; tÞ ¼ cos ny
XN
m¼0

WnmðrÞqmeiot; ð2Þ

where

WnmðrÞ ¼ Anm Jn
lnmr

R

� �
þ BnmIn

lnmr

R

� ��
þCnmYn

lnmr

R

� �
þ DnmKn

lnmr

R

� ��
; ð3Þ

in which Anm;Bnm;Cnm;Dnm are mode shape constants that are determined by the boundary
conditions. qm are the Ritz unknown coefficients, n is the number of nodal diameters, m is the
number of nodal circles. Jn and Yn are the Bessel functions of the first and second kinds, In and Kn
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Fig. 1. Considered cylindrical storage tank with an elastic annular plate on liquid surface.
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are the modified Bessel functions of the first and second kinds, and lnm is the frequency parameter
which is determined by the boundary condition. The annular plate may be attached to the
cylindrical wall with various boundary conditions such as clamped, simply supported, free, guided
or elastically supported boundary condition. In this paper, however, it is considered only that the
annular plate is clamped at r ¼ R and free at r ¼ a: The frequency parameter lnm is related to the
circular frequency onm of the plate in vacuum:

onm ¼
l2

nm

R2

ffiffiffiffiffiffiffiffiffi
D

rphp

s
: ð4Þ

The mode shapes for free vibrations of thin elastic plates coupled to the liquid are expanded by
using the solution in vacuum as the admissible function [1–5,8].

To simplify the computations, the mode shape constants are normalized so thatZ R

a

W 2
nmðrÞr dr ¼ 1: ð5Þ

From Eq. (5), the mode shape constant Anm is

Anm ¼
Z R

a
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: ð6Þ

In order to solve the problem, the kinetic and potential energies of the plate are evaluated. The
reference kinetic energy Tp of the plate is given by

Tp ¼ 1
2
rphp

Z 2p

0

Z R

a

w2ðr; yÞr dr ¼ 1
2
cnrphp

XN
m¼0

q2
m; ð7Þ

where cn ¼ p for n > 0 and cn ¼ 2p for n ¼ 0:
The maximum potential energy of the plate in vacuum is equal to the reference kinetic energy of

the same mode multiplied by the circular frequency o2
nm of this mode

Up ¼ o2
nmTp ¼ 1

2
cn

D

R4

XN
m¼0

l4
nmq2

m: ð8Þ

3. Energy of liquid

A cylindrical co-ordinate system (x, r, y) for the liquid domain is introduced as shown in Fig. 1.
The tank is filled with a non-viscous and incompressible liquid, with a free surface orthogonal to
the vertical tank axis. The surface tension of the liquid and the hydrostatic pressure effect are
neglected in the present study.

For an incompressible and non-viscous liquid, the deformation potential must satisfy the
following Laplace equation [3–5,8,14,15]:
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ARTICLE IN PRESS

Y.-W. Kim, Y.-S. Lee / Journal of Sound and Vibration 279 (2005) 217–235220



The boundary conditions imposed to the liquid are: (a) contact at the liquid–rigid bottom
interface; (b) contact at the liquid–rigid lateral cylindrical interface; (c) contact at the liquid–plate
interface for aprpR; and (d) the linearized sloshing condition at the free surface of the liquid for
0prpa: Therefore,

@f
@x

����
x¼0

¼ 0; ð10Þ

@f
@r

����
r¼R

¼ 0; ð11Þ

@f
@x

����
x¼H

¼
o2

g
fjx¼H for 0prpa;

w for aprpR;

8><
>: ð12a;bÞ

where g is the gravity acceleration and o is the circular frequency of vibration of the coupled
system. If the plate is not considered, the free surface range of 0prpa in Eq. (12a) is replaced to
0prpR:

The deformation potential satisfying Eq. (9), by using the separation of variables with respect
to considered co-ordinate, is assumed to be of the form for the asymmetric mode (n > 0):

f x; r; yð Þ ¼ cos ny
XN
k¼0

pnkJn

enkr

R

� � coshðenkx=RÞ
coshðenkH=RÞ

; ð13Þ

where k and n are the numbers of nodal circles and diameters of free surface wave.
Eq. (13) satisfies the boundary condition (10) but does not condition (11) yet. The following

equation is obtained by applying this assumed deformation potential into Eq. (11):

dJnðenkÞ
dr

¼ 0: ð14Þ

Eq. (13) satisfies the boundary condition (11) by using the roots of Eq. (14). Eq. (13) is not
adaptable to the axisymmetric mode (n ¼ 0) because the first root is zero e00 ¼ 0: This
deformation potential must be modified to express the axisymmetric mode. The axisymmetric
mode of (n; k)=(0, 0) only occurs in rigid motion when the plate vibrates in this mode because
the considered liquid is incompressible. Therefore, for the axisymmetric mode including this
(n; k)=(0, 0) mode, the deformation potential is changed to

fðx; r; yÞ ¼ p00 þ
XN
k¼1

p0kJ0
e0kr

R

� � coshðe0kx=RÞ
coshðe0kH=RÞ

: ð15Þ

The reference kinetic energy of liquid due to liquid–plate interaction is expressed as

TL ¼ 1
2 rL

Z 2p

0

Z R

a

fjx¼H

@f
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x¼H

r dr ¼ 1
2 rL

Z 2p

0

Z R

a

fjx¼Hwðr; yÞr dr: ð16Þ
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From Eq. (16), for the asymmetric mode (n > 0), the reference kinetic energy of liquid is given by

TL ¼ 1
2
rLcn

XN
m¼0

XN
k¼0

bnmkpnkqm: ð17Þ

For the axisymmetric mode (n ¼ 0), Eq. (17) is replaced by

TL ¼ 1
2
rLc0

XN
m¼0

g0mp00 þ
XN
k¼1

b0mkp0k

" #
qm: ð18Þ

4. Sloshing equation of liquid

To obtain the sloshing equation of liquid, one should apply the deformation potentials into the
free surface condition (12a) and the compatibility condition (12b). By using Eq. (13), for the
asymmetric mode (n > 0), one has

XN
k¼1

pnk

enk

R
Jn

enkr

R

� �
tanh

enkH

R

� �
¼

o2

g

XN
k¼0

pnk Jn

enkr

R

� �" #
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þ
XN
m¼0

WnmðrÞqm

" #
aprpR

: ð19Þ

Eq. (19) must be satisfied for all 0prpR: Therefore, multiplying Eq. (19) by Jnðenjr=RÞr and
integrating between 0 and R; one obtains the following sloshing equation:XN

k¼0

XN
j¼0

enk

R
tanh

enkH

R

� �
ankjpnk �

XN
m¼0

XN
j¼0

bnmjqm ¼
o2

g

XN
k¼0

XN
j¼0

%ankjpnk; ð20Þ

where ankj ; %ankj and bnmj are given in Appendix A.
For the axisymmetric mode (n ¼ 0), the following equation by using Eq. (15) is added in

Eq. (19):

0 ¼
o2

g
p00 þ

XN
k¼1

p0kJ0
e0kr

R

� �" #
0prpa

þ
XN
m¼0

W0mðrÞqm

" #
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: ð21Þ

Multiplying this equation by r dr and integrating between 0 and R; one obtains

�
XN
m¼0

g0mqm ¼
o2

g

a2

2
p00 þ

XN
k¼1

p0kZ0k

" #
; ð22Þ

where g0m and Z0k are given in Appendix A.
Therefore, the sloshing equation for the axisymmetric mode is modified to

XN
k¼1

XN
j¼1

e0k

R
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5. Eigenvalue problem

For the numerical calculation of the natural frequencies and the parameters of Ritz expansion
of modes, M terms in the expansion of w of Eq. (2) and K in the expansion of f of Eqs. (13) and
(15) are selected.

In Rayleigh–Ritz method, it is useful to introduce Rayleigh’s quotient in order to obtain the
vibration characteristics:

o2 ¼
Up

Tp þ TL

: ð24Þ

The reference kinetic and the maximum potential energy of the plate from Eqs. (7) and (8) can be
expressed in matrix forms of

Tp ¼ 1
2
cnqT½Mp�q; ð25Þ

Up ¼ 1
2
cnqT½Kp�q; ð26Þ

where qT ¼ q0 q1 y qM

� �
: The stiffness and mass matrices of the plate, ½Mp� and ½Kp�; are

½Kp�mi ¼ dmi
D

R4
l4

ni; ½Mp�mi ¼ rphpdmi; ð27Þ

where dmi is the Kronecker delta and m; i ¼ 0;y, M:
The reference kinetic energy of liquid, Eqs. (17) or (18), may be written as

TL ¼ 1
2
cnqT½ML�p; ð28Þ

where pT ¼ p0 p1 y pK

� �
and ½ML� is the coupled force matrix describing the inertial effect

of the liquid inside the tank.
The elements of the matrix ½ML� of dimension (M+1)	 (K+1) for the asymmetric (n>0) are

given by

½ML�mk ¼ rLbnmk; m ¼ 0; 1;y;M and k ¼ 0; 1;y;K : ð29Þ

And for the asymmetric mode (n=0), the elements of the matrix ½ML� are

½ML� ¼ ½ ½ML�m0 ½ML�mk �; m ¼ 0; 1;y;M and k ¼ 1;y;K ; ð30Þ

where

ML½ �m0¼ rLgm0; ML½ �mk¼ rLb0mk: ð31a;bÞ

Minimizing Rayleigh’s quotient, one obtains the following equation:

½Kp�q � o2 ½Mp�q þ ½ML�p
� �

¼ 0: ð32Þ

The sloshing Eqs. (20) and (23) can be rewritten in the matrix form:

½Kps�q þ ½Ks�p � o2½Ms�p ¼ 0; ð33Þ

where the elements of matrices ½Kps� of dimension ðK þ 1Þ 	 ðM þ 1Þ; ½Ks� and ½Ms� of dimension
(K þ 1)	 (K þ 1) in Eq. (33) for the asymmetric mode (n > 0) are

½Kps�km ¼ �bnmk; ð34Þ
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½Ks�kj ¼ dkj
enk

R
tanh

enkH

R

� �
ankj; ð35Þ

½Ms�kj ¼
%ankj

g
; ð36Þ

in which m ¼ 0; 1;y;M; and kðor jÞ ¼ 0; 1;y;K :
For the axisymmetric mode (n ¼ 0) the elements of matrices ½Kps�; ½Ks� and ½Ms� in Eq. (33) are

modified by

½Kps� ¼ ½Kps�0k ½Kps�km

� �
; ½Kps�0k ¼ �g0k; ½Kps�km ¼ �b0mk; ð37Þ

½Ks� ¼
0 0

0 ½Ks�kj

" #
; Ks½ �kj¼ dkj

e0k

R
tanh

e0kH

R

� �
a0kj ; ð38Þ

½Ms� ¼
Ms00 ½Ms�0j

½Ms�k0 ½Ms�kj

" #
; Ms00 ¼

a2

2g
;

½Ms�0j ¼
Z0j

g
; ½Ms�k0 ¼

Z0k

g
; ½Ms�kj ¼

%a0kj

g
: ð39Þ

The stiffness and mass matrices of liquid, ½Ks� and ½Ms�; have contribution only from the free
surface of liquid. ½Kps� is also the coupled force matrix with rL½Kps� ¼ �½ML�T relationship.

The eigenvalue problem takes the following final form by adding the sloshing Eq. (33) to
eigenvalue problem (32):

½Kp� ½0�

½Kps� ½Ks�

" #
q

p

( )
� o2 ½Mp� ½ML�

½0� ½Ms�

" #
q

p

( )
¼ 0: ð40Þ

This equation is a linear eigenvalue problem for a real, non-symmetric matrix, thus extraction
of eigenvalues and the corresponding eigenvectors becomes difficult particularly when very large
size matrices are involved. The eigenvalue problem can be transformed into one for symmetric
matrix using rL½Kps� ¼ �½ML�T: Thus,

½Kp� þ ½ML�½ %Ms��1½ML�T �½ML�½ %Ms��1½ %Ks�

�½ %Ks�½ %Ms��1½ML�T ½ %Ks�½ %Ms��1½ %Ks�

" #
q

p

( )
� o2 ½Mp� 0

0 ½ %Ks�

" #
q

p

( )
¼ 0; ð41Þ

where

½ %Ks� ¼ rL½Ks�; ½ %Ms� ¼ rL½Ms�: ð42Þ

Consequently, the determination of natural frequencies and the corresponding mode shapes
from Eq. (41) is much simpler than from Eq. (40).

As being extended the free surface region from 0prpa to 0prpR for the first term of right
side of Eq. (19), the sloshing frequency equation of the rigid cylindrical shell without annular plate
cover is derived as follows:

o2 ¼ g
enk

R
tanh

enkH

R

� �
: ð43Þ

This equation can be found in Ref. [6,14].
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6. Numerical results and discussion

To check the validity of the present analytical approach, some comparisons are made with the
published data and the finite element analysis results. ANSYS commercial FEM code [19] is used
for the finite element analysis procedures. In the finite element analysis, a two-dimensional
axisymmetric model is constructed with the axisymmetric structural shell element for the elastic
structures and fluid element for the liquid region. The shell element has two nodes and four
degrees of freedom at each node: three translations in the each nodal direction and a rotation. The
fluid element is defined by four nodes having three degrees of freedom at each node: three
translations in the each nodal direction. The radial displacements of liquid nodes along the rigid
cylindrical wall to present Eq. (10) are constrained. The liquid boundary conditions at the bottom
of the tank are zero axial displacement to simulate Eq. (11). The axial displacements of liquid
nodes along the wetted plate surfaces coincide with the corresponding displacements of the plate
to simulate Eq. (12b). The eigenvalue problem formulated within the FEM for the vibration
analysis is solved by the reduced subspace analysis method to consider the free surface of liquid.

The material properties of the annular plate and liquid are: E ¼ 72 GPa, n ¼ 0:3; rp ¼ 2780 kg/m3,
and rL ¼ 1000 kg/m3. To verify the present methodology, the sloshing frequencies of liquid
expressed as non-dimensional parameters (On ¼ on

ffiffiffiffiffiffiffiffiffi
R=g

p
) in the rigid cylindrical tank without

plate are compared with existing results [15,18] for the n ¼ 1 modes as shown in Fig. 2. It is
observed that the computed results are quite comparable with the existing results. Also the present
FEA results are compared with the present analytical results for the cylindrical storage tank with
R ¼ 1m, a/R=0.7, hp ¼ 4 mm and H ¼ 0:2R in Table 1. The agreement between the results is
very good and the discrepancy is less than 2.1% for sloshing modes, and 6.0% for bulging modes.
The discrepancy in the table is calculated by ðfA � fF Þ=fA 	 100; where, fA is the frequency from
the analytical approach and fF is that from FEA. The frequencies from the analytical approach
are somewhat higher than those from the finite element method. This is the reason that the
analytical results generally provide the upper bounds. The fundamental sloshing frequency occurs
in (n; k)=(1, 0) mode because the considered liquid is incompressible. The mode of (n; k)=(1, 0)
in the sloshing mode shape does not occur because there is no plate rigid motion for n ¼ 0 mode.
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Fig. 2. Variation of the sloshing frequencies for n ¼ 1 mode with various liquid levels of rigid cylindrical tank without

plate.

Y.-W. Kim, Y.-S. Lee / Journal of Sound and Vibration 279 (2005) 217–235 225



Fig. 3 shows the frequency variation of the axisymmetric mode of n ¼ 0 with various liquid
levels for the storage tank used in Table 1. The frequencies first increase to any converged values
and then remain constant with the increase of liquid level. This means that there is no effect of
liquid level in case that the liquid is filled to above half of the radius of storage tanks. The mode of
k ¼ 0 does not occur because there is no plate rigid motion in the sloshing mode shape for n ¼ 0
mode as stated in Table 1. Fig. 4 indicates the frequency variation of the asymmetric mode of
n ¼ 2 with various liquid levels for the storage tank used in Fig. 3. The general behavior is similar
to the axisymmetric mode as shown in Fig. 3. As presented in Figs. 3 and 4, the effect of liquid
level becomes great as the number of nodal circles k or m increases in the small liquid level, that is,
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Table 1

Comparison of the sloshing and bulging frequencies for the first 10 modes with FEM results (R ¼ 1 m, a ¼ 0:7m,

h ¼ 4 mm, H=L ¼ 0:2)

Sloshing mode Bulging mode

Modes (n; k) Analytical

approach

FEM Disc. (%) Modes (n; m) Analytical

approach

FEM Disc. (%)

1 (1,0) 0.6262 0.6291 �0.4631 1 (0,0) 11.014 10.591 3.8406

2 (2,0) 1.0011 0.9938 0.7292 2 (1,0) 11.518 11.231 2.4918

3 (0,1) 1.0477 1.0554 �0.7349 3 (2,0) 13.993 13.688 2.1797

4 (3,0) 1.2713 1.2567 1.1484 4 (3,0) 17.970 17.248 4.0178

5 (1,1) 1.3341 1.3071 2.0238 5 (4,0) 23.008 22.104 3.9291

6 (4,0) 1.4730 1.4535 1.3238 6 (5,0) 29.558 28.114 4.8853

7 (2,1) 1.5524 1.5196 2.1129 7 (6,0) 37.236 35.331 5.1160

8 (0,2) 1.5651 1.5741 �0.5750 8 (7,0) 46.465 43.887 5.5483

9 (5,0) 1.6335 1.6133 1.2366 9 (8,0) 57.285 53.932 5.8532

10 (3,1) 1.7260 1.6928 1.9235 10 (9,0) 69.604 65.593 5.7626

(n; k) and (n; m): n and k (or m) denote the number of nodal diameters and nodal circles.

Disc.: discrepancy.
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the frequencies become constant more rapidly with increase of the number of nodal circles. To
check the effect of liquid level on natural frequencies of the considered storage tank, one may
consider the liquid level only up to half of the radius of the tank.

Fig. 5 presents the effect of inner-to-outer radius ratio of annular plate on the first three
sloshing frequencies for each n ¼ 0; 1 and 2. The storage tank with an annular plate of hp=4mm
is filled up to H ¼ 0:5R (R ¼ 1 m) with liquid. The frequency variation ratio used in the figure is
calculated from fB=fU –1; where fB is the sloshing frequency for the tank with a plate and fU is for
the tank without a plate. As shown in this figure, the sloshing frequencies decrease non-linearly
with increase of this ratio or increase of the free surface. The effect of a/R ratio in lower modes is
much larger than in higher modes. That is, this effect decreases as the number of nodal circle k
increases. This effect is the largest for the n ¼ 1 mode and the least for the n ¼ 0 mode. This
means this effect in lower modes is greater than in higher modes also. For example, the frequency
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of (n; k)=(1, 0) mode increases about 130% and that of (n; k)=(1, 1) mode does about 60% by
attaching the annular plate of a/R=0.4 compared with the sloshing frequency of the tank without
a plate.

Fig. 6 gives the effect of inner-to-outer radius ratio of annular plate on the first three bulging
frequencies for each n ¼ 0; 1 and 2 for the tank used in Fig. 5. The frequency variation ratio used
in the figure is defined by fC=fV –1; where fC is the bulging frequency of the annular plate coupled
with liquid and fV is that of the plates in vacuum. The negative value of this frequency ratio means
the reduction of frequency by liquid coupling. The bulging frequencies decrease much more by
liquid coupling except for some modes as this radius ratio becomes small. For example, the
frequency in (n; m)=(2, 0) mode decreases about 60% for a=R ¼ 0:9 and about 75% for a=R ¼
0:4: The effect of a=R ratio in lower modes is much larger than in higher modes. For small a=R
ratio o 0.6, the frequencies of m ¼ 0 mode for n ¼ 0 and 1 decrease very large, above 85%,
compared with other modes because the bulging modes occur simultaneously with the first
sloshing modes. The frequency reduction, however, becomes small as the radius ratio is below 0.5
for these modes. The reason for this behavior is that the sloshing frequency and bulging frequency
have the same value with the result that the first bulging modes occur simultaneously with the first
sloshing modes. The free surface decreases as this ratio increases in the case of a=Ro0:5: In result,
the bulging frequency decreases less by the liquid coupling because the sloshing (or bulging)
frequency increases as this ratio increases.

The first three bulging mode shapes with a=R ratios of n ¼ 1 mode present in Fig. 7. As shown
in this figure, m ¼ 0 mode shape of the plate with a=R ¼ 0:5 is equal to sloshing mode shape, that
is, the bulging modes occur simultaneously with the first sloshing modes. The reason for this is
that the liquid coupling effect is very large as the contact surface of plate with liquid become large.
The relative amplitude of the plate is very small compared with that of the free surface in this
mode. The free surface motion declines and the bulging motion becomes dominant as the a=R
ratio increases. The free surface motion becomes small as the number of nodal circle m increases.

Fig. 8 demonstrates the effect of the annular plate’s thickness on the sloshing and bulging
frequency variation for the tank with an annular plate of a=R ¼ 0:7; R ¼ 1 m, H ¼ 0:25R: The
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sloshing frequency is very small compared with the bulging frequency. In the case of very thin
plate, the first sloshing and bulging frequencies are same. This means that these two modes occur
simultaneously because the liquid coupling effect is very large. The bulging and sloshing modes
are separated as the thickness of plate becomes above 2mm. The sloshing frequency first increases
in small thickness and then remains constant as the thickness becomes thick. The reason for this is
that the free surface always remains constant because there is no deformation of the plate in
sloshing mode shapes in the case of the tank with the relatively thick plate. Therefore, the sloshing
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frequency does not vary because the kinetic energy of liquid due to the free surface motion is
constant. For the tanks with very thin plates, however, the sloshing frequency varies with the
thickness of plate because the deformation of the plate occurs simultaneously with free surface
motion. The bulging frequency increases as the thickness becomes thick. The reason for this is that
the rigidity of plate increases as the thickness becomes thick.

Figs. 9–11 illustrate the sloshing and bulging mode shape variations with thickness of the
annular plate for the tank used in Fig. 8. The mode shapes of a tank with an annular plate of
hp ¼ 1 mm are presented in Fig. 9. The plate is deformed simultaneously by liquid coupling as
the sloshing mode shapes. For the second sloshing mode shapes, the relative deformation of the
plate is small compared with that of the free surface of liquid. The first bulging mode shape is
the same as the first sloshing mode shape. In the second bulging mode shapes, the deformation of
the plate is large compared with that of liquid. The mode shapes of n ¼ 0 mode for the tank with
an annular plate of hp ¼ 2 mm as given in Fig. 10 are very similar to Fig. 9. For n ¼ 1 sloshing
mode shapes, however, the relative deformation of the plate is small since the effect of liquid
coupling on plate deformation is not large due to high rigidity of the plate. From this, one can
estimate that there will be no deformation of plate in sloshing mode shapes in case that the
thickness becomes large. Fig. 11 shows the mode shapes for the tank with an annular plate of
hp ¼ 4 mm. There is no deformation of plate in sloshing mode shapes as expected in Fig. 10. The
first bulging mode is separated from the sloshing mode unlike the tank with a thin plate. In the
second bulging mode, the deformation of liquid is small compared with that of plate. This means
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that the sloshing mode shapes are characterized by only liquid motion and the bulging mode
shapes by only plate motion as the plate becomes thick. As shown in Figs. 9 and 10, the reason
why k ¼ 0 mode does not occur in sloshing mode shapes although the plate is deformed is that
k ¼ 0 mode shape is modified to k ¼ 1 mode shape by the plate deformation.

7. Conclusions

An analytical approach is used to investigate the vibration characteristics of the sloshing and
bulging mode for a circular cylindrical storage tank with an annular plate on sloshing surface. The
cylindrical tank is filled with a non-viscous and incompressible liquid having a free surface. The
free surface of liquid is partially covered by an elastic annular plate. The liquid domain is limited
by a rigid cylindrical wall and a rigid flat bottom. To demonstrate the validity of the present
analytical approach, the published results are compared for the rigid cylindrical tank without a
plate and the finite element analysis is performed for the tank with a plate. Based on the numerical
results, the followings are concluded.

The effect of liquid level on the sloshing and bulging frequency is great, but this effect is
constant in the case of the liquid being filled to above half of the radius of the storage tank. By
attaching the annular plate on the free surface, the sloshing frequencies of liquid increase due to
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decrease of the free surface and the bulging frequencies of plate decrease due to liquid coupling
effect. The coupling effect on the bulging modes become great as the inner to outer radius ratio
becomes small. The effect of this radius ratio on the natural frequency is greater in lower modes
than in higher modes. The sloshing and bulging frequency increases with the increase of plate
thickness. Above any thickness the sloshing frequency remains constant. The sloshing and bulging
modes occur simultaneously of are coupled if the plate has very thin thickness or small a=R ratio.
Conversely, the sloshing mode shapes are characterized by only the liquid motion and the bulging
mode shapes by only the plate motion as the thickness of the plate becomes thick or the inner
radius does large.

Appendix A

The coefficients ankj; %ankj and bnmj in Eq. (21) are as follows:

ankj ¼
Z R

0
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� �
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where dkj is the Kronecker delta.

%ankj ¼
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The coefficients g0m and Z0k in Eq. (23) are as follows:

g0m ¼
Z R

a

W0mðrÞr dr ¼ Anm gJ0m þ B0mgI0m þ C0mgY0m þ D0mgK0m

� �
; ðA:8Þ
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where
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